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M. Dozzi* E.T. Kolkovska' J.A. Lépez-Mimbelal

Abstract

We investigate lower and upper bounds for the blowup times of a system of semilinear
SPDEs. Under certain conditions on the system parameters, we obtain explicit solutions of
a related system of random PDEs, which allows us to use a formula due to Yor to obtain
the ditribution functions of several explosion times. We also give the Laplace transforms at

independent exponential times of related exponential functionals of Brownian motion.

1 Introduction

Existence and nonexistence of global solution for semilinear parabolic equations was investigated

initially by Fujita [4], who proved that for a bounded smooth domain D C R?, the equation

Ou(t
u(at’x) = Au(t,z) + u*P(t,z), =€ D,

with Dirichlet boundary condition, where 5 > 0 is a constant, explodes in finite time for all
nonnegative initial values u(0,z) € L*(D) satisfying [, u(0, z)¢(z) dz > AP Here A > 0 is the
first eigenvalue of the Laplacian on D and v the corresponding eigenfunction normalized so that

[9llpr = 1.

In a previous work [2] we investigated blow-up times of semilinear SPDEs of the prototype
du(t, z) = (Au(t,x) + u1+'8(t,x)) dt + wult,z) dW;, € D, (1.1)

with Dirichlet boundary conditions, where {W,} is a standard one-dimensional Brownian motion.
We obtained bounds both for the probability of finite-time blow-up of (¢, x), and for the prob-
ability of nonexplosion of u(t,z) in finite time. In case of kK = 0, the bounds we found give the
result of Fujita quoted above. We refer to [2] for definitions of blow-up times, and for types of
solutions of SPDEs. In [2] it is also shown that the asymptotic behavior of (1.1) is determined to

a great extent by the distribution of the exponential functional

t
/0 exp{kBW, — B(A + k*/2)r} dr.

*Institut Elie Cartan, Université Henri Poincaré Nancy 1, B.P. 239, F-54506 Vandoeuvre-les-Nancy Cedex,
France.
fCentro de Investigacién en Mateméticas, Apartado Postal 402, 36000 Guanajuato, Mexico.



del CIM AT

Comuwunicaciones

Functionals of the above form arise in many applications, specially in Financial and Actuarial
Mathematics [3, 6, 14] and have been investigated by different methods and by various authors
1, 3,7, 8,11, 12, 13, 14].

From the results of [2] it follows that for initial values of the form u(0,z) = k¢(x), z € D,

where k > 0 is a parameter, the explosion time 7" of (1.1) satisfies 0. < T < ¢*, where
t
oy = inf {t >0: / exp{kBW, — B(A + K?/2)r} dr > 1/(Bkﬁ||1/}||§o)} ,
0
t
o = inf {t >0: / exp{kBW, — B(A + &%/2)r} dr > 1/(Bk" (f V3 (z) dm)ﬁ)} :
0

Let us mention that the density of fg exp{kBW, — B(A + k2/2)r}dr, t > 0, can be obtained
from Yor’s formula ([14], Ch. 4 and [13]). In particular, when [1?(z)dz = [|¢||c, the above
inequalities together with Yor’s formula yield the exact distribution of the explosion time 7. The
upper bound o* of T was achieved in [2] by determining the blow-up time of a subsolution of Eq.
(1.1), while for the lower bound o, an scheme of successive approximations for the mild solution
of (1.1) was used.

Our aim in this paper is to obtain lower and upper bounds for the blow-up times of the system
of semilinear SPDEs

dui(t,z) = [(A+WV)ui(t,z) + ub(t,z)] dt + krua (t, z) AW,
dug(t,z) = [(A+ Va)ua(t,z) + ui(t, z)] dt + koua(t,z) dWy, x € D, (1.2)

with Dirichlet boundary conditions
u;(0,2) = fi(x) >0, z € D and w;(t,z) =0, t>0, z €D, i=1,2. (1.3)

Here p > ¢ > 1 are constants, D C R? is a bounded smooth domain, V; > 0 and ; # 0 are
constants, i = 1,2, and {W;}, is a standard one-dimensional Brownian motion defined on some
probability space (2, F,IP). As in [2], we are going to consider weak solutions of (1.2)-(1.3).
Below we are going to take the initial values of the form f; = k;3 for some constants k; > 0,
1 = 1,2. Also, we are going to set V; = A + H? /2, 1 = 1,2. These choices make it possible to
obtain explicit solutions of a related system of random PDEs, and to use Yor’s formula and some
extensions of it. Moreover, in contrast with the case treated in [2], the blow-up times of (1.2) are
finite with probability one; see e.g. [7], Prop. 6.4 and [8], Section 2. For general constants k1,
ko and p > q > 1, we obtain random times 7.4, 7** such that 7., < T < 7 where T is the
blow-up time of (1.2). Moreover, we show that the distributions of 7, and 7** are given in terms

of exponential functionals of the form

¢ ¢

A (t) = / eWr AW dr and A, (t) = / eWr v Wr .
0 0

By adapting a method of Jeanblanc, Pitman and Yor [5] to our setting, we obtain the Laplace

transforms of A**(0)) and A..(0)) at random times ) which are exponentially distributed with

parameter A, for any value of A > 0. From this we can derive upper bounds for probabilities of

the form IP{T" > 6,} for each A > 0. In the particular case of pka — k1 = gr1 — K2 =: p, the
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PW"dr, and the distributions of 7,4« and 7** can

relevant exponential functional is of the form fot e
be obtained explicitly from Yor’s formula. For a system of the form (1.2) with V3 = V5 = 0,
similar results can be obtained for 7**. However, in this case 7.4 is given in terms of the solution
of a non-homogeneous random Bernoulli equation for which we were not able to find an explicit

solution.

2 A system of random PDEs

Let us define for i =1, 2,
vi(t, z) = exp{—r;Wi}tu;(t,x), t>0, z€D. (2.1)

By Ito’s formula,

¢ 2t
_xl s K3 -,
e it zl—m/ e ”stdwer—; / e iWs s,
0 0

Putting u;(t, ¢;) = [pui(t, x)g;(x)dr, i = 1,2, where ¢; is any smooth function with compact
support, we get that a weak solution of (1.2) is given by

t

t t
w;i(t, ;) = u;i (0, ;) + / wi(s, (A +Vy)p;)ds + / u?i(s, ;) ds + Iﬁ:i/ ui(s, ;) dWs,  (2.2)
0 0 0

where {j} = {1,2}\{i} and 8, = p, By = ¢q. By applying the integration by parts formula we get
that

wtg) = [ wlto)pia)do
t
= 01(07%)4-/ e Ws duy(s, ;)
0
t ,ng
+ / wi(s, ;) <_Hi6_”iW5dWs + Eze_mws ds) + [e_miw"ui('ﬂpi)] (1),
0

where the quadratic variation is given by [e‘”iw (50 ] = —K? fo —RiWsui (s, ;) ds, t > 0.

Therefore,

t
vilto) = vil0,05) + / vils, (A + Vi)gr) ds
0

t 5, W2 [t
+/ e riWs (e“jWSvj) t () d5—22/ efﬂiWSui(s,goi)ds
0 0
t (2
= w0+ [ o (A + Ve - g s (2.3
0

t
b [ (@) (50 s
0
Hence, the vector (v (t,x),va(t, x)) is a weak solution of the system

ov;(t, x)
ot

whose integral form is

= (A +Vi— ’{12/2) Ui(tv ZL’) + e_Hth (e’ithUj(t7$))IBi ’ Ui(va) = fl(x)7 1= 17 27

t
vi(t, ) = et(V"*”?/mthi(m) +/ e ViR /2T, [e*””’Wt‘r (e"iWeru;(t -, ))ﬁl] (x)dr  (2.4)
0

3
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for t > 0, and i = 1,2. Here {T}} is the semigroup of bounded linear operators given by
Tif(z) =E[f(X¢), t <7p|Xo=1], z €D,

for all bounded and measurable f : D — R, where {X;};+>0 is the d-dimensional Brownian motion
with variance parameter 2, killed at the time 7p at which it hits 0D. As above, we denote by
A > 0 the first eigenvalue of the Laplacian on D, which satisfies

Ap(z) = —A¢(z), = € D, (2.5)

1 being the corresponding eigenfunction, which is strictly positive on D and 1|gp = 0. Recall
that Typ = e Map, t > 0. We are going to assume that 1 is normalized so that fD Y(x)dx = 1.
We write T' for the blow up time of system (2.4) when the initial values are of the form
fi = L(1)Y and fo = L(2)4y for some positive constants L(1) and L(2). Due to (2.1) and to the
a.s. continuity of Brownian paths, T is also the explosion time of system (1.2) with initial values

of the above form.

3 The case pry — kK1 = qKr1 — K3

First we consider Eq. (1.2) with parameters

i ,1=1,2, and pKy — K| = qKr1 — Ko =: p. (3.1)

v |3,

p>qg>1, Vi=A+

We are going to find random times 7, and 7% which are given in terms of the exponential functional
Ay = fg e?Wsds, t > 0, and such that 0 < 7, < T < 7*. The density function of A; is given
explicitly in [14], Section 4.

3.1 A lower bound for T

We are going to obtain a random time 7 which satisfies 7 < T

Theorem 1 Assume conditions (3.1), and let the initial values be of the form

Jfr=LQA)Y and f2 = L(2)y (3.2)

for some positive constants L(1) and L(2). Let . be given by

: [ : 1 1
T*‘mf{tzo'/o sl = mm{<p—1>Lp—1<1>uwué’z“<q—1>Lq—1<2>||wu‘é.?1}}'

Then 7 <T.

Proof. Let v; and vy solve (2.4). Then we have
t
nta) = MTfie)+ [ ANOIT [ (o] dr
0

t
vo(t,z) = eAtthg(m) —i—/ A=, [epWTv‘f(r,:):)] dr, ze€D, t>0.
0
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We define the operators Ry, Ry by
t
Riv(t,z) = eMTfi(x) +/ ePWr A=) (T, w)P dr,
0
t
Rov(t,x) = eMT,fo(x) +/ ePWr A=) (T, _ )l dr, ze D, t>0,
0

where v is any nonnegative, bounded and measurable function. Moreover, on the set t < 7, we
put

1
p—1

t
B (1) = [1—@—1) | e eMTrflu’;;ldr} |
0

Bo(t) = [1 —(g—1) /Ot ePWr eATTrnggl dr] s

Then we have

dgillt(t) = /Wit =DM T £ |PZLBP(1), By (0) = 1,

hence .
Ba) = 14 [ eI T B )
0

and similarly,

t
Bo(t) =1+ / Wt @AY | ]| 20 BY (r) dr.
0

Let us choose v > 0 such that v(t, z) < eMTyf1(z)B(t) for z € D and t < 7. Then eMT; f1(z) <
Riv(t,x) and

t
Riv(t,z) = MTifi(a) + / WA (T, (r, )P dr
0

t
< M fi(x) + / WA By (r)p AT | T 271 By ()N T (T i) () dr
0

—1
M fi||h BY(r) dr

= eAtthl(IE) {1 —+ /t epWr
0
= M fi(2)Bi(t),

and similarly,
eMT, fo(z) < Rou(t, ) < eMT, fo(x)Ba(t)

for all u such that 0 < u(t,z) < eMTyfao(z)Ba(t). Let us take, for x € D and 0 < t < 7,
i’ (t2) =MTfi(@). ) (h2) = MTia(a)

and
u&n) (t,x) = leugnfl)(t,x), ugn) (t,x) = Rgugnfl)(t,x), n > 1.

We are going to show that the function sequences {ugn)}, {ugn)} are increasing. As a matter of
fact,

t
u&o) (t,x) < ML () +/ ePWrtA(=r) (Tt_rugo) (7, x))p dr = Rluéo)(t, x) = ugl)(t,x).
0

5
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Now assume that ug”) > ugnfl) and ugn) > uén for some n > 1. Then

(n+1 :R u2 > leu n—1) _ ugn)’

where we have used the monotonicity of R; to obtain the above inequality. In the same way is

proved the monotonicity of the other sequence. Therefore the limits
(n) (n)
vi(t,z) = nhﬁngo uy (t,z), wvat,x) = TLILH;O Uy (t, )
exist for x € D and 0 <t < %. In virtue of the monotone convergence theorem we obtain that

vi(t,z) = Riva(t, ), wvalt,z) = Rovn(t,x), z €D, 0<t<m,

and moreover,

AtT
vi(t,z) < " Tih@) .,
[ (o 1) [ o AT, ol ]
AtT
valta) < e Tifalw) -
[1 —(g=1) [l etWr [N T £ 1 dr] i
The assertion follows by choosing the initial values according to (3.2). [ |

Remark Notice that for general bounded, measurable and positive f;, 2 = 1, 2, the blow-up time

of (1.2) is lower-bounded by the random time

t t
inf {t >0 / PVl eM T fr P dr > (p—1)7 or / PV | eA T fo|| 95 dr > (g — 1)1} ,
0 0

which coincides with 7 when the initial values satisfy (3.2).

3.2 An upper bound for T

We now set ¢; =9 and V; = A + £2/2 in (2.3), i = 1,2, thus obtaining the system

t
vi(t, ) = vi(0, ) +/ ‘¢ (enjwsvj)ﬁj (s,)ds, i=1,2, (3:3)
0
where ( ””JWSUJ) =[5 [ 5iWsp;(s x)]ﬁ Y(x)dx and B, = p, By = ¢q. By Jensen’s inequal-
ity,
Bi

(e ey ) (5,9) > [/D (e”jWSvj(s,x)) Y(x)de| = eﬁi“jWSUj(s,w)fBi,

which gives

(T
O0MLD) 5 oW (omsWeny 1,5)70) = WetiWon (1 )P, =12, € (L))

ot
In this way, v;(t,v) > hi(t), i = 1,2, where
MO _ ey, P20 Moy, hi(0) = wl0,0), =12 (34)

and p = pra — K1 = qr1 — k2. We define E(t) = hy(t) + ha(t), t > 0.
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Theorem 2

1. Assume that p=q > 1. Then T < 7%, where

t
7% = inf {t >0: / PV ds > 2P(p — 1)_1E1_p(0)} .
0

q

2. Letp>q>1, andlet Ay = 21 (g) " and eg = 1A(ha(0)/AY HP=IN(29E(0)7/ Ag) PP
Assume that )
2 % E9(0) > €7 Ay. (3.5)

Then T < 7*, where

t 1
7" = inf tZO:/e”WSdsZ o0 )
0 (g — 1) E=1(0)[2 %€ — b/ "~V AgE~4(0)]

Remark Notice that (3.5) follows from the condition [, fi(x)y(z) dz > A[l)/q, i=1,2.

Proof. Suppose first that p = ¢ > 1. We get from (3.4) that

dE(t)

— = M (1) + (1)) (3.6)

By substituting y = hy/he into the inequality 1 + y? > 27P(1 + y)P, which is valid for y > 0, we
obtain
hl(t)>p _ ( hl(t)>p
1+ >27P 1+ ,
<h2(t) ha(t)

hence hY(t) + hh(t) > 27P (hy(t) + hao(t))? . Plugging this into (3.6) leads to the differential in-
equality

dE(t)
dt
Thus, E(t) blows up no latter than the solution I(t) of the equation

> ePWI2TPEP ().

d;f) = M 27PIP(1),  1(0) = E(0),

whose explosion time is given by

t
T = inf {t >0: / e"Weds > 27P(p — 1)—1E1—p(0)} : (3.7)
0

Now we assume that p > g > 1. We want to lower-bound the solution components of system
(3.4). Our approach to achieve this is an adaptation of a technique used in [9].
Let us recall Young’s inequality (see e.g. [?] or [10]). Let 1 < b < oo and ¢ > 0, and let
a=>b/(b—1). Then
5§90 5fbyb
Ty < + ;
a b

From Young’s inequality (3.8) it follows that for any € > 0,

z,y > 0. 3.8
Y (3.8)

hE(t) > ehi(t) — ev-a Ap. (3.9)
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Indeed, (3.9) follows from (3.8) by setting b = p/q, y = hd(t), x =€, 6 = (p/q)"?, and using that
q < p. We also have
_p
€0 hQ(O)q — 657‘1 Ag > 0. (3.10)

In fact, if ¢ = 1 then 1 < (hg(O)/A(l)/q)p_q, which immediately gives 49 < h1(0). If ¢ =

(h2(0)/AY7)P=1 then eohd(0) — e/ P~ Ay = (BB(0)/AL/?) -0, and if €y = (279E%(0)/Ag)P~D/P we

obtain

B 271E1(0)
Ao

)

/p
q/yy _ P/ (P—q) Ao 1 a0y _
oh3(0) - /77 4, (srmy) M0 o
which together with the inequality (Ao/(279E9(0)))9/? > Ag/hd(0), render that the expression in
brackets is lower-bounded by zero.
It follows from (3.4) and (3.9) that

_p
dhl(t) > eth [thg(t) _ E(Z))qAO:| ,
dt
and therefore JE(t »
0 5 e [+ anto) - 5 o). .11

Setting y = e(l)/qhg(t)/hl(t) and using again the inequality 1 4 y? > 279(1 + y)?, we see that

ha(t) 4 eohd(t) = hi(t) [1 + (eé/q Z?g)q] > 974 (hl(t) + Eé/qhg(t))q > 276 E9(t)

because €y < 1. Plugging this into (3.11) renders

_p_
dEdit) > ePWe [2%0Eq(t) — eé’_qAQ} . (3.12)

Due to assumption (3.5) we get E(t) > E(0) > 0 for any ¢ > 0. Moreover, (3.12) transforms into

dE(t) - B Eg/(? (I)A
> ePWi q - .
20 e [2 €0 E{0)7 dt (3.13)
which gives
q—1
() > B (0) (3.14)

1—(q—1)Ea=1(0) |:2—q60 _ 6g/(p—q)AOE_Q(O)] oo

In this way E(t), and therefore (hj(t),ha(t)), is going to blow-up earlier than the random time

7% given by

t
7% = inf tzoz/epwsdsz !
0 (g = 1)E1(0) [2-9¢0 — /"~ 40 E-1(0)|
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4 A more general case

In this section we consider system (1.2) under the assumptions p > ¢ > 1 and V; = A + /i? /2,
i =1,2. Let us again write 5; = p, 85 = q and j € {1,2}\{i}. We have from (2.4)

t
vit, &) = eMT, fi(x) + / ePins—r)WetAE=r), (w(r,-)ﬁf) (z)dr, i=1,2.
0

Theorem 3 Assume that p > q > 1 and V; = A+ k2/2, i = 1,2, and let fi = L(1)y and
fo = L(2)y for some positive constants L(1) and L(2). Let T be given by

1
p— L1yl

t
or/e(qm@)WTZ . — (-
0 (¢ = 1)L71(2)[[¥]I5

t
Twx = Inf {t >0: / ePr2—r)Wr g, > (
0

Then T < T.

Proof. Let us define, for i =1, 2,
t
Riv(t,z) = eMTy fi(z) +/ Biri =) Wrt A=) (T, y(r, 2))% dr,
0

and
-1/(B;-1)

t
Bi(t) = [1 =B [ T R
0
Proceeding in the same way as in the proof of Theorem 1, we get that
v1(t, ) = Ryve(t, @), walt,z) = Rovy(t, x)

as long as t < i, and x € D. Moreover,

vi(t,z) < M, f () 1
L= (B = 1) fy e |l g 2 ar]
= L(i)(x)
[1 —(Bi— 1)L(Z‘)Bi71H¢Hgé_l f(f e(ﬁz"fj—m)Wrdr} i
by our choice of f; and fs. i

Corollary 4 Let the random time 7' be defined by

t
7 = inf {t >0: / max {e(p’”_’“)wﬁe(q’il_’”)w’"} dr
0

> min{ 1 ! }}
a (p— DL )[B " (g = DL @)l [ |

Then ™ < T
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In order to obtain an upper bound for T"when p > ¢ > 1 and V; = A + 53/2, i=1,2, we first
notice that a sub-solution for Eq. (3.3) is given by the solution of

dha(t)
dt

= elPr2=r)Wep, ()P, dh;;t):e@mw)mhl(t)q, hi(0) = v;(0,¢), i=1,2. (4.1)

Working with system (4.1) as we did with (3.4) in the proof of Theorem 2, we get that

_p
dl;it) > min {e(p’”_“l)Wt, e(q’“_’”)Wt} [Z_QEOEq(t) - Ao} ,

and in case of p = g,

dE(t)
dt

> min {e(pffz—fﬂ)Wt, e(pm—fiz)Wt} 2—PEP(t)’

which can be handled using the same method as in the proof of Theorem 2.1. In this way we

obtain the following result for the explosion time of system (1.2).

Theorem 5 Letp > q > 1.
1. If p=q then T < 7**, where

t
S inf {t >0 / min {e(p:‘127:‘il)wr’ e(Pnrm)Wr} ds > 2P(p — 1)1E1p(0)} )
0
2. If p> q and (3.5) holds true, then T' < 7%* where
t
7 = inf {t >0: / min {e(p@_”l)WT, e(q’“_“?)w’“} dr
0

1

>
(q - 1)EQ*1(0) |:2*q60 — Eg/(p_q)AOEiq(O)}

Remark Setting ¢ > 0 and
-1
M = ((q — 1)ET(0)[2 % — &/ <p—q>AOE—q(0)]) , (4.2)
we get

¢
P{r™ >t} = ]P{/ min {e(p'”*m)WT,e(qm*m)wr} dr < M}
0

= ]P{e— Jo min{e(rramr)We elas =) Wek dr efM}

I

¢ g[S o

where we used Chebyshev’s inequality. A similar estimate for the distribution function of 7., but
involving the functional fg max {e(p”*m)wﬁ e(q’“*’”)wr} dr, can be obtained using that 7/ < 7.
The Laplace transforms of the random functionals foe max {e“W’“, etWr } dr, foe min {eaWT, etWr } dr
where 6 is an independent exponentially distributed time and a > 0, b > 0 are constants, are

given in Theorem 7 below.

10
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5 The Laplace transform of a Brownian motion functional

Let a,b € [0,00) be given constants, and let F' : R — (0,00) be the locally bounded function
defined by

F(2) = €1, 00)(2) + €10 0 (2).

Hence, for any z > 0,

min{e®®, e®*}, if a < b,
F(z) = A (5.1)
max{e??, e}, ifa>b.
We want to investigate the functional of Brownian motion A}" defined by
t t
AF = / F(W,)ds = / (e“ml[opo)(Ws) n ebWSI(_OQO)(WS)) ds. (5.2)
0 0

Let 0), be an exponentially distributed random variable of parameter k, independent of {W},
and let gg, (w) be the last zero of W (w) before 0 (w). Our first aim is to calculate the Laplace
transform of Agk , which follows from a simple adaptation of the approaches in [5] and [14]. In

fact, as in [5] we can write
IE [exp {—Ag;}] =1E [exp {—Aggk H IE [exp - {.Agk — A;k H ) (5.3)

and substituting AF instead of F' in the above equality, where A > 0, we get an expression for
the Laplace transform of Aél in terms of the two expectations in the RHS of (5.3). Let {/;} be
the local time at 0 of {W;}, and

Ts:=1inf{t > 0: ¢ > s}

the inverse local time. Using formula (2.4) in [5] we obtain that

E [exp {—Aggk }] - k:/ooo dIE [exp— {k;n n AEZH . (5.4)

From Corollary 3.4 and Theorem 3.1 in [5] we know that for general F,

E [exp - {k;n +AE H = exp {i (@)} (k,0) + é (@), (k, 0)} , (5.5)

where ®'(k,t) =: u(k,t) is the unique bounded solution of the Sturm-Liouville equation

Lo (B LYo voy=1
2 - 2 ) - )
and Fy := F|R,, F_(2) := F(—z), 2 > 0. In our case
Fi(z)=e¥ and F_(2)=e %, 2z>0.

The remaining expectation in the RHS of (5.3) can be written as

E [exp {—Ag; - AL H - ’;/OOO dt [O7+ (k,t) + & (k,1)] ; (5.6)
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2 2
see [5], Corollary 3.2. We are going to calculate the functions <I>%F+(l<:, t) and - (k,t) in our

special setting. The Sturm-Liouville equation corresponding to )‘;FJF, A >0, is given by

1 " k2 )‘2 at
§U (a,k,t) = 5 + =€ U(a,k,t), U(a,k,0)=1. (5.7)

When a = 2 we can use Yor’s solution of the previous equation, according to which

Kk()\et)
Ki(N)

2
U2,k t) = = &% (k, 1), (5.8)

where K, is the usual modified Bessel function with index v. When a # 2 we solve (5.7) by
means of a change of variables. We set t = 2s/a and for simplicity denote U(a, k,t) by v(k,t).

1, (, 2s 2N, 2s
— — = — — - =1
zvtt <ka a > < 9 + 9 € v ka a ) U(k,O) )

Then we have,

and J )
S a a
=uz =20l o= (3) o

Therefore,

la® , 2s k2 N2 9 2s

iz 22 ) = (2o 4 22 k22

2458<’a> <2+26 \"a )
or

1, 2s 2k 2)% 2s
2<’“>=<2+2 v\Eg )

Putting w(k,s) = v(k,2s/a), we get w'(k,s) = (2/a)v'(k,2s/a) and (w”)*(k, s) = Sv"(k,2s/a).

Hence, w satisfies
1a? 2k 2)?
fa—w”(k, s) = ( + 625> w(k,s),

24 a? a?
and ) )
1 k A
iw”(k:, s) = (8@4 + 8@4628) w(k, s),

which is the equation (5.7) with a = 2 and new constants k£ and A. Thus, by (5.8), w has the
form
K k/()\’et) 4k 4\

ith &' ==, N ==
Kk-/()\/) w1 a27

w(k7 t) = a27

and therefore

Ky /a2 (4/\eat/2/a2)
-K—4I<:/a2 (4A/a2)

O P4 (k1) = v(k, t) = w(k, at/2) —

2
To calculate & - we proceed in the same fashion, but now using the fact that the corresponding

Sturm-Liouville equation (for a = 2) has as solution

LX) sy

U(2,k,t) = o (k,t) = ORI

where I, is the other modified Bessel function. Hence,

-[4k’/b2 (4)\€bt/2/b2) ‘> 0
L2 (4N/0%) 7

A2
O (k,t) =

12
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We now continue with the development of (5.5). We recall from [14] (pag. 131) that
AKp1(A) = =AK,(A) + kKi(A)  and  M_1(\) = ML (N) + kI(N), (5.9)

2 2
where the derivatives are with respect to A. The derivatives of &% 7+ (k,t) and - (k,t) at the
point ¢ = 0 are given by

e K}y 102 (40 a?)(a/2) (4N /a?)
<<1> o )t k0 = Kyj a2 (40 /a?)

% 4k /(a?) - K%+1(4/\/a2)
a \4N/(a?)  Kyp/e2(4)/a?)

_ 9 % . (4)\/a2)K4k/a2+1(4)\/a2)
2\ a? Ky a2(4X/a?) 7

where in the last equality we used (5.9). In a similar way,

<¢§F>’ .0 L2 (N0 (0/2)(AN0) b (VD) Lgpo 1 (AN/DD) 4k
t ’ I4k/b2(4)‘/b2) 2 I4k/b2 (4)\/[)2) b2 '
Substituting the two expressions above into (5.5) we obtain the following.
Lemma 6
k2 Ao l
IE [exp — ?Tl+?.4ﬂ =expq 35 R(a,\, k) + S(b,\ k)| ¢,
where
4\ 4\ 4\ 4
DR (2) 2l (32)
a [ a2 241 a2 4k b [4k v 5-1\p?
Rla,\k)=-| ———F+— — — d Sb\Nk)==—5-—"—F— . 5.10
(aa ) ) 92 ( Kﬁ (%) a2) an ( 3Ny ) 9 <b2 Iﬁ (;l),\) ( )
a a b2
Putting together (5.3), (5.4), (5.6) and Lemma 6 we get the following formulas.

Theorem 7 The Laplace transforms of Ag;k and A(i are given by

-xar 4 I 2%
Ele 27% | =k | Ak b E)) S dl = 11
[e ] / exp{ L(B(a. A ) + S(b. >>} W me e SCRE)

and

ﬁAF ]{72 o) Kﬁ (%6%> I@ (%ebTZ)
I‘E[e‘2 o | = / C ot de, (5.12)

R(a, N k) + S(b, A\ k) J Ky (2) Ly (B)

a b

where R(a, A\, k) and S(b,\, k) are given by (5.10).

Corollary 8 Let 0 be an exponentially distributed random variable of parameter k > 0, inde-
pendent of {Wy}. For all k > 0,

k2 M /°°
(PV2R) +8@Q V2R Jo | K (8) L (&)

P{T > 0, <
{T > k}_R

where M is given by (4.2), P = min{pre — k1,qr1 — K2}, Q = max{pra — K1,qr1 — K2}, and R
and S are given by (5.10).
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Proof.

From Theorem 5 we know that for any s > 0,

P{T > s} < P{r** > s} = P{Al < M},

where AL is given by (5.2) with a = pka — k1 and b = gk1 — ko. Using Chebyshev’s inequality as
before we get IP{AL" < M} < eME [exp{—.AL'}]. The result follows from (5.12), putting A = v/2
and s = 6. [ ]
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